

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Operator		Orifice I.I		438320 0005	Ta (K) - Pa (mm) -	293 - 759.46
PLATE	======================================	======================================			METER	ORFICE
OR Run #	START (m3)	STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	DIFF Hg (mm)	DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.3960 0.9970 0.8910 0.8500 0.6990	3.2 6.4 7.8 8.7 12.7	2.00 4.00 5.00 5.50 8.00
	 	 	 	<u> </u>	 	

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0120 1.0078 1.0058 1.0047 0.9993	0.7249 1.0108 1.1288 1.1820 1.4296	1.4257 2.0163 2.2543 2.3643 2.8514		0.9958 0.9916 0.9896 0.9885 0.9832	0.7133 0.9946 1.1107 1.1630 1.4066	0.8784 1.2423 1.3889 1.4567
Qstd slop intercept coefficie	t (b) = ent (r) =	2.02533 -0.03593 0.99983	n e n	Qa slope intercept coefficie	t (b) = ent (r) =	1.26823 -0.02214 0.99983
y axis =	SQRT[H20(I	Pa/760)(298/5	Γa)]	y axis =	SQRT[H20([a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)

Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$

 $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA5b	Calibration Date :	16-Jan-18
Equipment no.	:	HVS010	Calibration Due Date :	16-Mar-18

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition							
Temperature, T _a	291	Kelvin F	Pressure, P _a	1015	mmHg		

Orifice Transfer Standard Information										
Equipment No.	Ori001	Slope, m _c	2.02533	Intercept, bc	-0.03593					
Last Calibration Date	20-Mar-17	(HxP _a /1013.3 x 298/T _a) ^{1/2}								
Next Calibration Date	20-Mar-18		= m	$n_c \times Q_{std} + b_c$						

	Calibration of TSP								
Calibration	Ма	nometer Re	eading	Q _{std}	Continuous Flow	IC			
Point	H (inches of water)		(m ³ / min.)	Recorder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)				
	(up)	(down)	(difference)	X-axis	(CFM)	Y-axis			
1	1.4	1.4	2.8	0.8545	40	40.5122			
2	2.1	2.1	4.2	1.0426	46	46.5890			
3	3.1	3.1	6.2	1.2629	53	53.6786			
4	3.9	3.9	7.8	1.4144	58	58.7427			
5	4.7	4.7	9.4	1.5509	63	63.8067			
By Linear Regression of Y	on X								
	Slope, m	=	33.2	2153 In	tercept, b =	11.9753			

Correlation Coefficient* = 0.9997

Calibration Accepted = Yes/Ne**

**	Delete	as	appro	priate

Remarks: As per client's provided information, the equipment reference no. of the calibrated High Volume Sampler has been

re-assigned from EL222 to HVS010 with respect to the update in quality management system.

 Calibrated by
 :
 Jackey MA
 Checked by
 :
 Pauline Wong

 Date
 :
 16-Jan-18
 Date
 :
 16-Jan-18

 $[\]ensuremath{^*}$ if Correlation Coefficient < 0.990, check and recalibration again.

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA6a	Calibration Date	:	16-Jan-18
Equipment no.	:	HVS013	Calibration Due Date	: -	16-Mar-18

CALIBRATION OF CONTINUOUS FLOW RECORDER

		Ambient Condit	dition		
Temperature, T _a	291	Kelvin Press	ssure, P _a	1015	mmHg

Orifice Transfer Standard Information									
Equipment No.	Ori001	Slope, m _c	2.02533	Intercept, bc	-0.03593				
Last Calibration Date	20-Mar-17	(HxP _a /1013.3 x 298/T _a) ^{1/2}							
Next Calibration Date	20-May-17		= m	$_{\rm c}$ x Q $_{\rm std}$ + $_{\rm c}$					

Calibration of TSP									
Calibration	Manometer Reading			Q _{std}	Continuous Flow	IC			
Point	H (inches of water)		(m ³ / min.)	Recorder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)				
	(up)	(down)	(difference)	X-axis	(CFM)	Y-axis			
1	1.5	1.5	3.0	0.8839	38	38.4866			
2	2.3	2.3	4.6	1.0903	44	44.5634			
3	3.5	3.5	7.0	1.3408	52	52.6658			
4	4.5	4.5	9.0	1.5179	56	56.7171			
5	5.7	5.7	11.4	1.7062	62	62.7939			

By Linear Regression of Y or	١X
------------------------------	----

Slope, m	=	29.3743	Intercept, b =	12.6292

Correlation Coefficient* = 0.9991

Calibration Accepted = Yes/Ne**

Remarks: As per client's provided information, the equipment reference no. of the calibrated High Volume Sampler has been

re-assigned from EL551 to HVS013 with respect to the update in quality management system

Calibrated by	· :	Jackey MA	Checked by :	Pauline Wong
Date	:	16-Jan-18	Date :	16-Jan-18

^{*} if Correlation Coefficient < 0.990, check and recalibration again.

^{**} Delete as appropriate.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0426 01-02

Page

of

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer: Type/Model No .:

Larson Davis LxT1

0003737

PCB

Serial/Equipment No.:

377B02

171529

Adaptors used:

Item submitted by Customer Name:

Lam Environmental Service Ltd.

Address of Customer:

Request No .:

Date of receipt:

26-Apr-2017

Date of test:

28-Apr-2017

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model: Serial No. Expiry Date:

Traceable to:

Signal generator

B&K 4226 DS 360

2288444

61227

18-Jun-2017 01-Apr-2018 CIGISMEC CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity: Air pressure:

50 ± 10 % 1010 ± 5 hPa

Test specifications

1. The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Min/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

04-May-2017

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Sois & Materials Engineering Co . Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黃竹坑罐37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0426 01-02

Page

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	C	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	N/A	N/A	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
2.2	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Lai Sheng Jie 28-Apr-2017 Checked by:

1

Date:

Fung Chi Yip \ 04-May-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-2/Issue 1/Rev C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA1110 02

to:

Item tested

Description: Manufacturer: Acoustical Calibrator (Class 1)

Type/Model No.:

Rion Co., Ltd. NC-73

Serial/Equipment No.: Adaptors used:

10707358

Item submitted by

Curstomer.

Lam Geotechnics Ltd.

Address of Customer Request No.

Date of receipt:

10-Nov-2017

Date of test:

14-Nov-2017

Reference equipment used in the calibration

Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer Universal counter	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B 53132A	Serial No. 2341427 2239857 2346941 61227 US36087050 GB41300350 MY40003662	Expiry Date: 11-Apr-2018 05-May-2018 03-May-2018 01-Apr-2018 25-Apr-2018 21-Apr-2018 22-Apr-2018	Traceable (SCL CEPREI CEPREI CEPREI CEPREI CEPREI CEPREI CEPREI
---	---	--	---	--

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity:

50 ± 10 % 1010 ± 5 hPa

Air pressure:

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B 1. and the lab calibration procedure SMTP004-CA-156.
- The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique. 2.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

-Min/Feng Jun Qi

Huang Jia

Approved Signatory:

Date:

15-Nov-2017

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No CARP156-1/Issue 1/Rev D/01/03/2007

綜 合 試 驗 有 限 公 司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA1110 02

Page:

2

1, Measured Sound Pressure Level

> The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties

			(Output level in dB re 20 µPa)
Frequency Shown	Output Sound Pressure Level Setting	Measured Output Sound Pressure Level	Estimated Expanded Uncertainty
Hz	dB	dB	dB
1000	94.00	93.93	0.10

2. Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be

At 1000 Hz

STF = 0.008 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 991.5 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

Total Noise and Distortion 4.

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.3 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Checked by:

Date:

14-Nov-2017

Date:

Fung Chi Yip 5-Nov-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

Form No CARP156-2/Issue 1/Rev C/01/05/2000